\begin{eqnarray}
\varepsilon_{x}(x, y, z) &=& \frac{\partial u}{\partial x} = -z \frac{\partial \theta}{\partial x} \\\
\varepsilon_{y}(x, y, z) &=& \frac{\partial v}{\partial x} = 0 \\\
\varepsilon_{z}(x, y, z) &=& \frac{\partial w}{\partial x} = 0 \\\
\gamma_{xy}(x, y, z) &=& \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0 \\\
\gamma_{xz}(x, y, z) &=& \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = -\theta + \frac{\partial w}{\partial x} \\\
\gamma_{yz}(x, y, z) &=& \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0
\end{eqnarray}